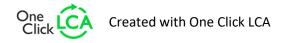


ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025


cast iron Tierps Järnbruk AB

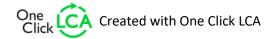
EPD HUB, HUB-3606

Published on 11.07.2025, last updated on 11.07.2025, valid until 10.07.2030

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.1 (5 Dec 2023) and JRC characterization factors EF 3.1.

GENERAL INFORMATION

MANUFACTURER


MANUFACTURER	
Manufacturer	Tierps Järnbruk AB
Address	Parkgatan 10, 815 40 Tierp, Sweden
Contact details	info@tierpsjarnbruk.se
Website	www.tierpsjarnbruk.se
EPD STANDARDS, SCOPE	AND VERIFICATION
Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Christer Asen, Tierps Järnbruk AB
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☐ External verification
EPD verifier	Sarah Curpen, as an authorized verifier acting

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

for EPD Hub Limited

PRODUCT

Product name	cast iron
Additional labels	grey iron and ductile iron
Product reference	street goods, manhole products, garden products, functional products, art products
Place(s) of raw material origin	Sweden
Place of production	Sweden
Place(s) of installation and use	Sweden
Period for data	01.01.23 – 31.12.23
Averaging in EPD	No grouping
Variation in GWP-fossil for A1-A3 (%)	-
GTIN (Global Trade Item Number)	-
NOBB (Norwegian Building Product Database)	-
A1-A3 Specific data (%)	92,4

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 KG CAST IRON
Declared unit	1 KG CAST IRON
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO₂e)	4,03E-01
GWP-total, A1-A3 (kgCO₂e)	4,15E-01
Secondary material, inputs (%)	100
Secondary material, outputs (%)	85
Total energy use, A1-A3 (kWh)	5,41
Net freshwater use, A1-A3 (m³)	0,1

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

With genuine knowledge and experience, we have been manufacturing street goods for decades. We also develop and design products for both function and decoration. Cast iron products such as fences, posts, urns, paving stones, information boards, etc. Products that are functional and durable over time. All production takes place at our facility in Tierp, northern Uppland. We buy metal scrap that we recycle in our production. Locally.

PRODUCT DESCRIPTION

Cast iron is a class of iron–carbon alloys with a carbon content of more than 2% and silicon content around 1–3%

The product we produce is cast iron. Metal scrap reused and melted down in our local factory to become various different cast iron products such as Manhole products and others.

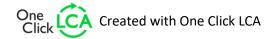
Further information can be found at: www.tierpsjarnbruk.se

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	100	SE
Minerals	-	-
Fossil materials	-	-
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate


Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0,0316

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 KG CAST IRON
Mass per declared unit	1 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage		mbly ige			U	se sta	ge			E	nd of l	ife stag	ge		yond t system undar	1
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4		D	
×	×	×	×	×	MND	MND	MND	MND	MND	MND	MND	×	×	×	×			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A market-based approach is used in modelling the electricity mix utilized in the factory.

Scrap iron products are bought from companies and private individuals. It's sorted and used in the production.

The scrap iron is moved by trucks in the facility and melted in an electric oven.

The melted iron is poured into sand made molds where it's hardened to the final products. We have a manual production for bigger more complex products and a machinery production for smaller and volume products. The products are polished with iron bullets in a machine and grinded when necessary. Some products are painted and stored before final transport.

TRANSPORT AND INSTALLATION (A4-A5)

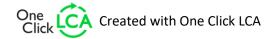
Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The final products are packed on pallets and sent to final customers with truck service. Mostly within Sweden. We have assumed an average transport distance about 550 kms.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

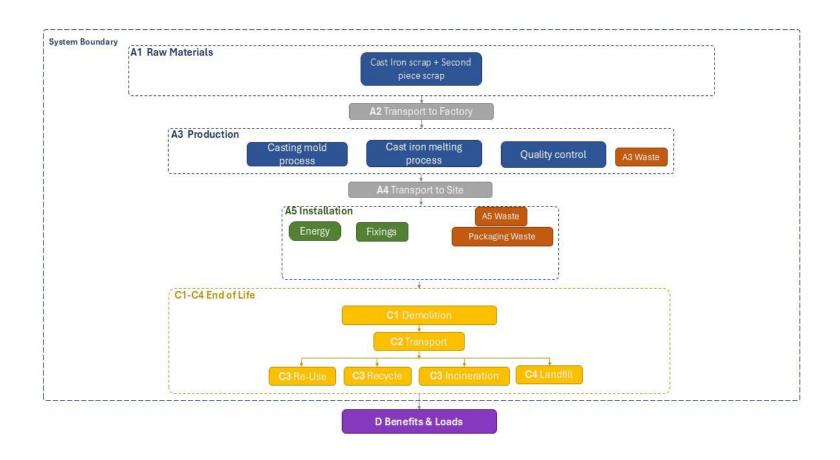
Air, soil, and water impacts during the use phase have not been studied.

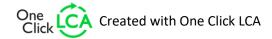

PRODUCT END OF LIFE (C1-C4, D)

85% of product is recycled

15% of product is deposited

5


No declaration in module D as 100% renewed scrap iron material.



MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

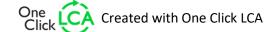
The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

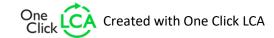

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

PRODUCT & MANUFACTURING SITES GROUPING

Type of grouping	No grouping
Grouping method	Not applicable
Variation in GWP-fossil for A1-A3, %	-

This EPD is product and factory specific.

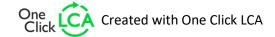
7



LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cutoff, EN 15804+A2'.

ENVIRONMENTAL IMPACT DATA


The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

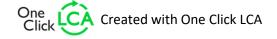
CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	0,00E+00	2,12E-01	2,02E-01	4,15E-01	6,39E-02	1,45E-01	MND	2,00E-02	4,30E-02	1,92E-02	9,37E-04	-1,92E-03						
GWP – fossil	kg CO₂e	0,00E+00	2,12E-01	1,90E-01	4,03E-01	6,39E-02	2,25E-03	MND	2,00E-02	4,30E-02	1,92E-02	9,36E-04	-8,94E-03						
GWP – biogenic	kg CO₂e	0,00E+00	0,00E+00	-1,16E-01	-1,16E-01	1,45E-05	1,42E-01	MND	0,00E+00	9,38E-06	-4,08E-05	-2,98E-07	7,03E-03						
GWP – LULUC	kg CO₂e	0,00E+00	7,16E-05	1,28E-01	1,28E-01	2,86E-05	3,41E-06	MND	2,05E-06	1,90E-05	2,37E-05	5,35E-07	-1,39E-05						
Ozone depletion pot.	kg CFC-11e	0,00E+00	4,23E-09	3,73E-09	7,97E-09	9,43E-10	3,71E-11	MND	3,07E-10	6,01E-10	2,58E-10	2,71E-11	-1,10E-10						
Acidification potential	mol H⁺e	0,00E+00	4,21E-04	1,08E-03	1,50E-03	2,18E-04	1,25E-05	MND	1,81E-04	1,43E-04	2,29E-04	6,64E-06	-5,63E-05						
EP-freshwater ²⁾	kg Pe	0,00E+00	1,39E-05	3,64E-02	3,64E-02	4,97E-06	5,98E-07	MND	5,78E-07	3,34E-06	1,24E-05	7,70E-08	-5,53E-06						
EP-marine	kg Ne	0,00E+00	1,00E-04	2,10E-04	3,10E-04	7,16E-05	1,33E-05	MND	8,39E-05	4,64E-05	5,06E-05	2,53E-06	-8,54E-06						
EP-terrestrial	mol Ne	0,00E+00	1,08E-03	2,62E-03	3,70E-03	7,79E-04	5,08E-05	MND	9,18E-04	5,05E-04	5,72E-04	2,76E-05	-8,43E-05						
POCP ("smog") ³)	kg NMVOCe	0,00E+00	7,09E-04	7,96E-04	1,51E-03	3,21E-04	1,67E-05	MND	2,74E-04	1,99E-04	1,69E-04	9,90E-06	-2,73E-05						
ADP-minerals & metals ⁴)	kg Sbe	0,00E+00	6,95E-07	2,29E-01	2,29E-01	1,78E-07	6,06E-09	MND	7,18E-09	1,41E-07	1,36E-06	1,49E-09	-1,14E-08						
ADP-fossil resources	MJ	0,00E+00	2,97E+00	4,02E+00	6,99E+00	9,27E-01	3,20E-02	MND	2,62E-01	6,03E-01	2,58E-01	2,30E-02	-1,47E-01						
Water use ⁵⁾	m³e depr.	0,00E+00	1,44E-02	4,15E+00	4,17E+00	4,58E-03	8,66E-04	MND	6,54E-04	2,80E-03	4,64E-03	6,63E-05	-2,84E-03						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

9

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1


Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	0,00E+00	1,33E-08	1,40E-08	2,73E-08	6,40E-09	2,22E-10	MND	5,14E-09	3,41E-09	3,10E-09	1,51E-10	-4,78E-10						
Ionizing radiation ⁶⁾	kBq U235e	0,00E+00	4,51E-03	7,90E-03	1,24E-02	8,08E-04	8,30E-05	MND	1,16E-04	4,88E-04	2,19E-03	1,44E-05	-2,83E-03						
Ecotoxicity (freshwater)	CTUe	0,00E+00	4,26E-01	6,82E-01	1,11E+00	1,31E-01	1,06E-02	MND	1,44E-02	9,53E-02	1,50E-01	1,93E-03	-1,75E-02						
Human toxicity, cancer	CTUh	0,00E+00	3,31E-11	2,78E-10	3,11E-10	1,05E-11	1,10E-12	MND	2,06E-12	7,31E-12	1,72E-11	1,73E-13	-1,86E-12						
Human tox. non-cancer	CTUh	0,00E+00	1,74E-09	1,17E-09	2,91E-09	6,00E-10	6,05E-11	MND	3,26E-11	3,77E-10	1,17E-09	3,97E-12	-7,55E-11						
SQP ⁷⁾	-	0,00E+00	1,55E+00	1,33E+01	1,48E+01	9,34E-01	2,98E-02	MND	1,84E-02	3,60E-01	5,02E-01	4,52E-02	-5,32E-02						

6) EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

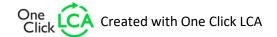
USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	0,00E+00	5,78E-02	1,35E+01	1,36E+01	1,27E-02	-9,71E-01	MND	1,66E-03	8,27E-03	4,81E-02	2,22E-04	1,79E-01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	1,01E+00	1,01E+00	0,00E+00	-1,01E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,02E-02						
Total use of renew. PER	MJ	0,00E+00	5,78E-02	1,45E+01	1,46E+01	1,27E-02	-1,99E+00	MND	1,66E-03	8,27E-03	4,81E-02	2,22E-04	2,40E-01						
Non-re. PER as energy	MJ	0,00E+00	2,97E+00	2,92E+00	5,89E+00	9,27E-01	3,20E-02	MND	2,62E-01	6,03E-01	2,58E-01	2,30E-02	-1,47E-01						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	6,69E-02	6,69E-02	0,00E+00	-6,69E-02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,80E-02						
Total use of non-re. PER	MJ	0,00E+00	2,97E+00	2,99E+00	5,96E+00	9,27E-01	-3,49E-02	MND	2,62E-01	6,03E-01	2,58E-01	2,30E-02	-1,29E-01						
Secondary materials	kg	1,00E+00	1,30E-03	5,01E-03	1,01E+00	3,95E-04	2,13E-05	MND	1,09E-04	2,71E-04	3,15E-04	5,78E-06	-1,89E-05						
Renew. secondary fuels	MJ	0,00E+00	1,33E-05	2,68E-02	2,68E-02	5,01E-06	2,15E-07	MND	2,84E-07	3,45E-06	1,46E-05	1,20E-07	-1,28E-07						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	0,00E+00	4,08E-04	9,71E-02	9,75E-02	1,37E-04	-8,34E-05	MND	1,73E-05	7,99E-05	1,37E-04	2,39E-05	-1,11E-04						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste	kg	0,00E+00	3,88E-03	1,45E-02	1,84E-02	1,57E-03	2,03E-04	MND	2,92E-04	1,05E-03	1,69E-03	2,54E-05	-6,39E-04						
Non-hazardous waste	kg	0,00E+00	9,10E-02	3,47E-01	4,38E-01	2,91E-02	1,47E-01	MND	3,97E-03	1,97E-02	6,09E-02	5,80E-04	-2,80E-02						
Radioactive waste	kg	0,00E+00	1,13E-06	1,01E-04	1,02E-04	1,98E-07	2,07E-08	MND	2,85E-08	1,20E-07	5,60E-07	3,52E-09	-7,25E-07						


END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,10E-02	MND	2,00E-01	0,00E+00	8,50E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,07E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,50E-02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,20E-02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – GWP-GHG

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	0,00E+00	2,12E-01	3,18E-01	5,31E-01	6,39E-02	2,25E-03	MND	2,00E-02	4,30E-02	1,92E-02	9,37E-04	-8,95E-03						

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows-CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

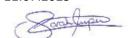
THIRD-PARTY VERIFICATION STATEMENT

EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance are filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

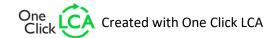
EPD Hub is not able to identify any unjustified deviations from the PCR and EN 15802+A2 in the Environmental Product Declaration and its project report.

EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.


The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.

Verified tools


Tool verifier: Magaly Gonzalez Vazquez

Tool verification validity: 27 March 2025 - 26 March 2028

Sarah Curpen, as an authorized verifier acting for EPD Hub Limited. 11.07.2025

